Exercise Sheet #2

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

- **P1.** (Problem 2.2.) Prove that the extended real line $[-\infty, \infty]$ is homeomorphic to the closed unit interval [0, 1].
- **P2.** (Problem 2.3.) Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in $[-\infty,\infty]$, and let $c\in\mathbb{R}$. If $(x_n)_{n\in\mathbb{N}}$ converges to an extended real number, then the sequence $(cx_n)_{n\in\mathbb{N}}$ also converges, and

$$\lim_{n \to \infty} (cx_n) = c \cdot \lim_{n \to \infty} x_n. \tag{1}$$

- **P3.** Let X, Y be two sets and $f: X \to Y$ a function.
 - (a) Prove that if $\mathcal{F}_Y \subseteq P(Y)$ is a σ -algebra, then $\mathcal{F}_X := \{f^{-1}(A) \mid A \in \mathcal{F}_Y\}$ is a σ -algebra.
 - **(b)** Prove that for $C \subseteq P(Y)$, we have that $\sigma(f^{-1}(C)) = f^{-1}(\sigma(C))$.
- **P4.** Let (X, \mathcal{T}, μ) be a finite measure space, and let $\mathcal{A} \subseteq \mathcal{P}(X)$ be an algebra. Show that if \mathcal{A} generates \mathcal{T} , then for every $B \in \mathcal{T}$ and for every $\epsilon > 0$, there exists $A \in \mathcal{A}$ such that $\mu(A\Delta B) \leq \epsilon$.
- **P5.** Let X a set. We say that $S \subseteq \mathcal{P}(X)$ is a semialgebra if
 - $\emptyset, X \in \mathcal{S}$,
 - if $A, B \in \mathcal{S}$ then $A \cap B \in \mathcal{S}$, and
 - if $A, B \in \mathcal{S}$, then $A \setminus B = \bigsqcup_{i=1}^n C_i$ for some $C_i \in \mathcal{S}$.

Show that if S is a semialgebra, then

$$\mathcal{A}(S) = \left\{ \bigcup_{i=1}^{n} A_i \mid n \in \mathbb{N}, A_i \in \mathcal{S} \right\}.$$

Can we replace \bigcup by | | ?